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1 INTRODUCTION 

Recognizing the sex of conspecifics is important: Expending one's attentions 
Q or one's seed Q on the wrong parity of partner could put one at a 
competitive disadvantage. While some animals use pheromones to recognize 
sex, in humans this task is primarily visual: "Many socially living animals ... 
recognize each other as members of the same species, as individuals, and as 
social partners by means of visual signals and communicate their mood and 
intentions by the same sensory modality. In many primate species the 
individual structure of the face is the most important visual characteristic of 
each group member" (Grusser, Selke, & Zynda 1985). A core issue is how 
sex is recognized from face; yet until recently this received little attention. 

Many factors make the face a focus of interest in humans, and thus a good 
locus for sexually dimorphic features. It is the subject of scrutiny in commun- 
ication: Facial gestures, phylogenetic precursors to verbal communication 
(Grusser, et al. 1985), supplement verbal language cues; lip reading augments 
audial cues of language (and may ovemde them, as in the McGurk effect 
(McGurk, & MacDonald 1976). The human face is visually accessible since 
it is less clothed for protection and modesty than other bodily parts, to pem~it 
vision and breathing. Autonomic and physical signs appear on the face (such 
as pupillary constriction/dilation, or flared nostrils with labored breathing or 
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anger), and can indicate the individual's arousal and potential for threat. Too, 
emotions are played out in facial expressions: n e s e  differ from expressions 
used in language, and may dictate whether approach or avoidance is the best 
course. (Ekman and Friesen have identified six "universal" expressions of 
emotion which occur cross-culturally (Ekman 1973a; Ekman 1973b; Ekman 
1977; Ekman 1989; Ekman, & Friesen 1969; Ekman, Friesen, & Sirnons 
1985) and have distinctive autonomic nervous system signatures (Ekman, 
Levenson, & Friesen 1983; Schwartz, Weinberger, & Singer 1981; Stembach 
1962), making them effective indicators of the bearer's state; several of these, 
such as anger and fear, have decided significance to the onlooker.) 

In short, we have reason to look at the face; and we have need of a visual 
indication of sex; so it is sensible that some visual cues of sex should abide on 
the face. 

Primate physiologists have devoted much attention to faces. Neurons that 
respond selectively to faces have been identified in the amygdala @oUs 198 1; 
Rolls 1984; Sanghera, Rolls, & Roper-Hall 1979); the anterior inferior 
temporal cortex (Gross, Rocha-Miranda, & Bender 1972; Rolls, Judge, & 
Sanghera 1977); a polysensory area of the dorsal (anterior) bank of the 
superior temporal sulcus (STS) (Bruce, Desimone, & Gross 1981), where 
response latencies are 200-300 msec after presentation of the face; in the 
fundus and anterior portion of the superior temporal sulcus, where response 
latencies are 70-150 msec (Baylis, Rolls, & Leonard 1985; Perrett, Rolls, & 
Caan 1982; Perrett, et al. 1984); in parietal cortex (Leinonen, & Nyman 
1979); and in frontal cortex (F'igarev, Rizzolatti, & Scandolara 1979). The 
superior temporal sulcus work is particularly interesting, as up to 20% 
(Bruce, et al. 1981; Perrett, et al. 1982), though as low as 3% (Perrett, et al. 
1984) of neurons tested are accounted "face cells" in that their response to the 
best tried face was at least twice (and often more than ten times) as great than 
the greatest response to any nonface stimulus tested (Perrett, et al. 1982) 
(including gratings and random 3-D objects for instance). Some such neurons 
appear to identify specific faces independent of expression (Perrett, et al. 
1982), while others respond to features or expression independent of face 
(Perrett, et al. 1984). 

There is great variability in how selective these cells are to a specific face: 
Some are active for most faces, and others highly selective for but one or a 
few (Perrett, et al. 1982; Rolls 1992). Consequently it would not be 
implausible for some STS cells to respond preferentially according to sex of 
faces; or this could occur in the arnygdala, where damage leads to disruption 



of emotional and social responses to faces (Rolls 1984; Young, & Yarnane 
1992). No attempt has been made to test for face cells selective for the sex of 
a primate (human or monkey), perhaps due to lack of conviction that facial 
sex differences exist in rhesus monkeys. 

Monkeys with bilateral temporal lobe lesions (affecting, for instance, the 
STS) may develop "Kluver-Bucy " syndrome (Horel, Keating, & Misantone 
1972; Jones, & Mishkin 1972; Kluver, & Bucy 1939; Trezean, Dalle, & Ore 
1955), which includes inappropriate reaction to faces, and sexual 
indiscrirninance. However, this is not likely to ensue from selective inability 
to recognize sex, since these monkeys' pathological sexual eclecticism extends 
not only to individuals of the wrong sex, but of the wrong species Q and 
kingdom. 

There may be a human analog of Kluver-Bucy (Trezean, et al. 1955); 
however the best-described human lapse in responding to faces is 
"prospagnosia," or inability to recognize faces (Benton, & van Allen 1972; 
Bodamer 1947; Bomstein 1963; Bornstein, Sroka, & Munitz 1969; Christen, 
Landis, & Regard 1985; Damasio, Damasio, & van Hoesen 1982; Gloning, 
Gloning, Jellinger, & Quatember 1970; Hecaen, & Angelergues 1962; 
Meadows 1974; Whiteley, & Wanington 1977). This attends bilateral mesial 
occipitotemporal lesions (lesions of the lingual and fusiform gyri) (Damasio, 
et al. 1982; Jeeves 1984), often from vascular lesions of the posterior cerebral 
artery. The affected neurons may be the analog of the "face cells" studied in 
monkeys. The aMicted are able to tell there is a face, but cannot identify 
whose it is. Sex recognition is typically preserved (Tranel, Damasio, & 
Damasio 1988). 

The lesion technique provides evidence that a region of the brain may be 
involved in some function, but cannot by itself tell us what that function is. 
New techniques for functionally mapping the activity of normal brains have 
recently been developed. One of these methods, positron-emission 
tomography (PET), has been used to identify brain regions that are involved 
in face processing and, in particular, to localize brain areas that are active 
during recognition of sex from faces (Sergent, Ohta, & MacDonald 1992). 

Several mechanisms may explain preserved ability to discern sex, in the 
"face" of lost ability to identify the bearer of the face, in humans. Different 
cortical areas may subserve recognition of sex versus facial identity; indeed, 
more rostral areas of temporal cortex, in addition to subcalcarine cortex, are 



believed necessary for identity but not sex recognition in humans; damage to 
these rostral areas would engender loss of identity recognition, with 
preservation of sex recognition. Loss of ability to discriminate sex appears to 
require damage to both left and right subcalcarine "early" visual association 
cortices(Trane1, et al. 1988). 

Preserved ability to infer sex from ancillary features may help: Characteristic 
hairstyles, clothing, jewelry or makeup are associated with males or females, 
but seldom uniquely identify the bearer. In addition, sex discrimination (but 
not identity discrimination) is vastly overlearned, in legion contexts, which 
could promote a robust neuronal representation less sensitive to loss of a 
fraction of involved neurons. Each face to which we are exposed represents a 
"training instance" of either maleness or femaleness, with associated features 
of voice, mannerisms, clothing and body habitus to disambiguate the answer 
(provide a "teacher"); yet we are exposed to comparatively few instances of 
any individual, and don't always have a secondary tag to tell us if we are right 
or wrong about who it is, supposing we have any idea at all. 

Quite young infants are able to tell males from females (by whatever 
constellation of cues, probably including pitch of voice), allowing new 
encounters to serve as training examples in which novel faces are linked to the 
appropriate sex. Thus the process of sex recognition training may commence 
quite early. Finally, computer analysis has revealed that the features which 
allow sex discrimination may occur in the first few principal components of 
the faces, involving lower spatial frequency cues, while those for identity 
recognition reside in later principal components (O'Toole, Abci, 
Deffenbacher, & Valentin 1993). 

In any event, neurologically intact humans do recognize sex from face. But 
by and large they are unable to say how. Although certain features are nearly 
pathognomonic for one sex or the other (facial hair for men, makeup or 
certain hairstyles for women), even in the absence of these cues the 
determination is made; and even in their presence, other cues may override. 

Sex-recognition in faces is thus a prototypical pattern recognition task of the 
sort at whlch humans traditionally excel, and by which knowledge-based 
Artificial Intelligence has traditionally k e n  vexed; in short, an ideal 
application to demonstrate the capabilities of neural networks. It appears to 
follow no simple algorithm, and indeed is modifiable according to fashion 
(makeup, hair etc). While ambiguous cases exist, for which we must appeal 
to other cues such as physical build (if visible), voice patterns (if audible), 
and mannerisms, humans are fairly good in most cases at discriminating sex 



merely from photos of faces, without resorting to such adscititious cues. 'Ihe 
obvious question is, can neural networks do the same? We have developed 
a neural network system called SexNet that can classify the faces of college- 
aged students with 89% accuracy. Humans achieved a classification 
performance of 88% on the same set of faces. Our performance is higher than 
that reported from other neural network systems that start with feature 
extraction (Golomb, Lawrence, & Sejnowski 1991). ' Moreover, even a 
perceptron, with one layer of variable weights, achieves a respectable 
accuracy (Gray, Lawrence, Golomb, & Sejnowski 1993). These results 
demonstrate that good performance at face classification can be achieved with 
relatively simple preprocessing of images. In this chapter we will summarize 
these results. 

2 METHODS 

We started with 5 12x5 12 face images of 90 young adult faces (45 male, 45 
female) (See Fig. 1) (O'Toole, Millward, & Anderson 1988). Faces had no 
facial hair, no jewelry, and apparently no makeup. A white cloth was draped 
about each neck to eliminate possible clothing cues. Most images were head 
on, but exact angle varied. 

Each face image was rotated until eyes were level; scaled and translated to 
position eyes and mouth similarly in each image; and clipped to present a 
similar extent of image around eyes and mouth. (This clipping eliminated hair 
cues on many faces, though residual hair cues remained in some.) Final faces 
were 30x30 pixels with 12 pixels between the eyes, and 8 pixels from eyes to 
mouth. The 256 gray-level images were adjusted to the same average 
brightness. (No attempt was made to equalize higher order statistics.) This 
served as input to the networks, as shown in Figure 1. 
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Figure 1 

Figure 1: Preprocessing for faces. The original image is shown 
in the upper left. The center of each eye was located by hand 
and the line joining the eyes was rotated to the horizontal. ?he 
distance between the eyes and the perpendicular distance between 
the eyes and mouth were normalized (upper right). The image 
was scaled and cropped (lower left) and subsampled randomly 
within each subregion to produce a 30x30 image (lower right). 
The average gray level of the pixels was adjusted to have the 
same value for all images. 
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Figure 2: Compression network. The preprocessed images 
were compressed with a 900x40~900 encoder to reduce the 
dimensionality of the input space to the SexNet. Sample input 
images are shown on the bottom and their corresponding outputs 
from a trained compression network are shown above. In some 
networks this compression stage was bypassed and the gray level 
image was used directly as input to the sex identification 
network. 



Network processing consisted of two phases: image compression and sex 
discrimination. Both networks were fully connected three layer networks with 
two biases, trained with conventional backpropagation (Parker 1986; 
Rumelhart, Hinton, & Williams 1986; Werbos 1974). with a bias, a sigmoidal 
squashing function, and a learning rate of 0.2, using the Neuristique SN2 
simulator written by L. Bouou and Y. LeCun. 

Image compression followed the scheme of Cottrell, Munro and Zipser 
(Cottrell, Munro, & Zipser 1987), in which an input to a back-propagation 
network is reproduced as output, after being forced through a hidden unit 
bottleneck (i.e. a smaller number of units), as shown in Figure 2. This 
process, if successful, gives a new reduced representation of the input (here, 
the face image) in the activity of the (fewer) hidden units. If the network is 
able to reproduce the input as output from the information in the hidden units, 
the new reduced representation in the hidden units must contain the salient 
information of the input (faces). This scheme, though it technically involves 
supervised learning, can be viewed as unsupervised since no "teacher", other 
than the input itself, is required to produce the error signal (Cottrell, & 
Fleming 1990). 

The new reduced representation of each input (i.e. the activities of the hidden 
units of the compression network for that face) can be used as a substitute, 
more parsimonious input to a second stage network which derives some 
secondary information from the input (in our case, the sex of the face), as 
illustrated in Figure 3. The application of this two-stage network technique to 
faces was pioneered by Cottrell and Fleming, who used it for face recognition, 
with a more limited effort at sex recognition (producing 37% errors) (Cottrell, 
et al. 1990). 

In our work, the compression net served to force the 900 unit (30x30) images 
(900 inputs) through a 40 hidden unit bottleneck, and reconstruct the image at 
the 900 unit output level. Thus, the input equalled the desired output. ?he 
network trained for 2000 runs on each of 90 faces, yielding output faces 
which were subjectively distinct and discriminable, although not identical to 
the inputs. This procedure served to forge a representation of each face in the 
activities of only 40 units, and thus provide a more tractable input (40 units 
rather than 900) to the sex discrimination network Q a boon for a small 
training set. The second, sex-discrimination network, had 40 inputs (the 
activities of the 40 hidden units of the compression net), 0 or 40 hidden units, 
and one output unit. Training consisted of encouraging, by gradient descent 
(Rumelhart, et al. 1986)) the network to produce a " 1" for men, and a "0" for 



women. (These numbers are standard network integers, and any similarity to 
discriminating male and female anatomical parts is purely coincidental.) 
Values greater than 0.5 were accounted "male", and those less than 0.5 
female. Trials were also done with no antecedent compression, and with no 
hidden units in the SexNet (i.e. feeding the 900 unit input directly to the one 
unit output). 

As the suitable benchmark for sex discrimination by the network is human 
performance on the same faces, human testing was undertaken. Sex order 
was chosen to be random for 45 faces (even vs odd sequential digits of pi 
coded male vs female), and, to equalize the numbers of males and females, the 
order was repeated with reverse parity for the second 45 faces. 5 humans 
were tested on the 90 faces, and made two binary decisions for each face: sex 
and certainty of their answer (sure vs unsure). They had unlimited time, and 
could scrutinize faces in any manner. The full 512x512 resolution images 
were used, which included hair but no clothing (see Fig. 1). 

For comparison, 9 tests of the SexNet were undertaken, each training on a 
different 80 faces, leaving a distinct set of 10 untrained faces for testing. We 
performed tests on two sets of images. The first set included some hair (See 
Fig 2) but the second set was cropped so that only the central portion of the 
face was visible. 
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1 output unit 
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40 input units 

Inputs = Compressed Representation 
Output = Sex 

1 = male (>0.5) 
0 = female (<0.5) 

Figure 3: Network for identifying sex from compressed images 
of faces. the 40 hidden units from a compression network (see 
Fig. 2) are used as input to a 40 x 40 x 1 identification network. 
The output was threshholded to classify each image as male 
(output > 0.5) or female (output < 0.5). 



Figure 4: Weights in a perceptron network that was trained to 
discriminate sex from images of faces. Only the central region 
of the face was used in training, which excluded information 
from the outline of the face and hairline. The area of each 
square in the diagram is proportional to the value of the weight 
in the network assigned to that region of the face. White weights 
are excitatory and black weights are inhibitory. A high intensity 
in a region of the face with a white weight provides evidence for 
male, and a high intensity region with black weights is evidence 
for female (Adapted from (Gray, et al. 1993)). 



3 RESULTS 

Human Performance. 

Psychophysical studies of 5 humans on the 90 faces revealed errors on 8, 10, 
12, 8 , and 14 faces, corresponding to 8.9%. 11.1%, 13.3%,8.9% and 15.5%, 
for an average error rate of of 11.6%. Humans and the network seemed 
prone to similar errors. One male face gave particular trouble to the SexNet, 
being wrongly assigned when a test face, and taking long to train when a 
training face. This same face was (erroneously) judged "female", "sure" by 
all 5 observers. 

SexNet. 

SexNet achieved a performance of 89% on the set of images that included the 
outline of the face and some hair, which was comparable to the 88% 
performance achieved by humans given the same information. When the 
images of the faces were pared down to eliminate the chin and forehead 
(which also removed all hair cues), sex judgements were much more difficult 
for human observers; the performance of the network fell from 89% to 8 1%, 
and remained superior to human observers. 

The hidden units proved unnecessary to the SexNet's performance; a 
perceptron (no hidden units) was as successful as networks with up to 40 
hidden units, suggesting that the task may be linearly separable. In a 
followup study (Gray, et al. 1993) we trained a perceptron directly from the 
gray level images and achieved a performance of 79% for the cropped images. 
This was quite surprising since it had been previously thought that sex 
discrimination was a higher-order problem. In Figure 4, the area of each 
square corresponds to the strength of the weight connecting that image pixel 
to the output unit. The value of the output unit was computed by multiplying 
the gray level of each pixel with its corresponding weight, summing the 
products, and passing the sum through a sigmoid. Since "male" corresponded 
to an output value of 1, each positive term in the sum (from a positive weight) 
could be considered evidence that the face is male, and each negative term 
(from a negative weight) evidence that the face is female. 

Evaluation of optimal resizing of the faces (prior to their functioning as inputs 
to the network) showed the choice of 30x30 images to have been near optimal 
for network performance (reference). In contrast humans need higher 
resolution for best performance. 



Antecedent compression of faces was not required for good performance of 
the SexNet, which functioned approximately equally well with the raw gray- 
level images. (However, having once compressed the images, training time 
was faster with the reduced input due to fewer connections in the network.) 

Although compression was not required for good network performance, use of 
compression permitted examination of the characteristics of hidden units, 
which in turn provided insight into characteristics used by the network. 
(Certainly, the characteristics used by that network with those hidden units; 
and presumably networks without) If one hidden unit in the compression 
subnet is "turned on" (activity set to I), with all others "off' (activity O), the 
compression network's output (the decompressed image) reveals a rather 
vague-appearing nonspecific face, corresponding to the "holon" of Cottrell 
and Fleming (Cottrell, et al. 1990), or a mixture of the "eigenfaces" of Turk 
and Pentland (Turk, & Pentland 199 1). 

Deciphering characteristics of the SexNet was also possible by examining 
weights in the network: For example, evaluation of the weights of the SexNet 
showed presence of an elongated philtrum (the space between the nose and 
mouth, relative to the distance from eyes to mouth which was standardized) 
was strongly correlated with maleness. This was apparent both in the simplest 
perceptron networks (See Fig. 4) and in examination of the hidden units from 
compression inputs with a particularly strong positive connection to maleness, 
and a strong negative connection to femaleness. 

4 DISCUSSION 

Comparison with human performance. 

The complex visual pattern recognition task of sexing human faces can be 
adequately performed by a neural network without prior feature selection and 
with minimal preprocessing Q contrary to the confident predictions of several 
of our colleagues. Human perfom~ance was matched by a using either a 900 
x 40 x 900 back-propagation image compression network such as had 
previously been used by Cottrell and Fleming for face identification, the 
activities of whose hidden units served as inputs to a 40x40~1 back- 
propagation SexNet; or equivalent performance was achieved by a perceptron 
SexNet which translated the 900 unit input (or the 40 unit reduced input) 
directly to sex with no intermediate hdden units, indicating that the task is 



linearly separable. No efforts to optimize the network were needed to match 
human performance1. 

The SexNet performance was similar to humans' not just by percent errors. 
Not only did it correctly sex previously unseen faces, but it had difficulties on 
faces which also posed diff~culties for humans. Indeed on one preliminary 
trial it correctly assigned all ten test faces, but misjudged two of the 80 
training faces. These included the problematic male discussed above, to 
which it assigned the androgynous value of 0.495, and another male on which 
it performed wretchedly, with a value between 0.2 and 0.3, despite copious 
training. The SexNet proved correct: The face was an unambiguous female 
whose sex value had been mistranscribed in the training data. The SexNet 
correctly sexed the face based on the other faces, in spite of faulty training 
information. It had evidently done a fine job of abstracting what distinguishes 
the sexes. 

Failure of humans and the network on the same face suggests how one might 
handle the network's difficulty, in analogy with human strategies. When a 
face is found by the network to be female (according to weights which 
correctly gauge sex of "most" training faces) but the person is male (or vice 
versa), one shouldn't emend male-female categories too drastically, as one 
may encounter another nearly identical face which is in fact female. The 
human strategy confronted with a "training face" (one for which sex is known 
by other criteria) would consist in making a special category for the 
individual, and having that provide input to overrule the facial information. If 
another network were trained to identify problematic individuals then they 
could be dealt with separately. The outliers could then be correctly identified 
without adverse consequences to generalization. A similar strategy has 
proved useful in other domains: In Baxt's neural network which identifies 
whether patients presenting to the emergency room with chest pain are having 
a myocardial infarction, superior performance was achieved by training a 
separate network on the difficult-to-learn cases (Baxt 1992). 

1 The SexNet was in fact slightly better at discriminating sex than the humans 
tested; however, since the network's performance improved with training, the 
results may be taken to indicate that the humans tested should spend more time 
engaged in discriminating sex. 



Comparison with other network approaches to sex recognition. 

Others have used neural networks for sex identification from faces. The task 
is referred to by other authors as "gender" recognition, but "gender" is 
properly a grammatical term: specifically, words have gender, people don't. 
In English, the term "gender" has attained increasing currency as a 
euphemistic substitute for (male vs female) "sex". However, "To talk of 
persons or creatures of the masculine or feminine g., meaning of the male or 
female sex, is either a jocularity (permissible or not according to context) or a 
blunder."' Admittedly, the usage is otherwise, but we prefer the anatomically 
correct term. Neural network efforts on sex recognition begin with CottrelI 
and Fleming, whose principal focus was face recognition. Their network used 
a 64 x 64 face with 80 hidden units for compression; this was passed to a 
perceptron with a unit for each name, a unit for faceness, and units for male 
and female "gender". ?hey suggest that for image compression the relevant 
ratio is not that of hidden units to input units, but rather of hidden units to 
number of patterns, which they suggest should be about 1:l. (Ours was 1: 
>2.). Their training set consisted of 64 faces and 13 non-face stimuli. They 
note that their network "failed to accurately categorize novel faces according 
to gender, making 37% errors on novel faces"; however their the small 
training set is likely to contribute. 

Brunelli and Poggio used Hyper Basis Function networks for "gender" 
classification. Their strategy differed from ours and that of Cottrell in that 
they first automatically extracted features from images of pre-normalized 
scale and rotation; these features, rather than the faces, were used as input. 
This requires that they have advance insight into which features might be 
important for the discrimination process; this is a task which is bypassed in 
the strategy we employed, which requires no advance insight into what might 
prove useful. They also symmetrized the faces by averaging left and right 
eyebrow and chin information, which may be reasonable for computer sexing, 
but detracts from any suggestion of physiological verisimilitude. 7hey used 
two competing network, one for male recognition and one for female 
recognition; the outcome was determined by which network gave the greatest 
response. Only three of the sixteen features used as input developed 

2 Fowler's Modem English Usage, Oxford University Press, 2nd ed. 1985, revised 
1983 



significant weights, and two of these may be artifacts of modem sex-specific 
preening practices: eyebrow thickness and distance from eyebrows to eyes are 
both artificially modified in women, in the direction of increased eye-to-brow 
distance and decreased width, by the practice of eyebrow plucking or tweezing 
(which may be even more widespread in Italy, whence the face images 
derived, than in the US.), so that their preeminence among the discriminating 
features may rank with hair style, makeup, and jewelry as social rather than 
biological facial cues. The third feature was nose width. Vertical position of 
nose and mouth were also given small weights. Their strategy of using 
competing male and female networks allowed natural determination of the 
networks' "prototype" male and female faces, constrained, however, by the 
features selected for the network. These prototypes were observed to 
resemble not average faces, but caricatures of the sexes, exaggerating the 
distinctive features. Interestingly, the prototype faces extracted from the 
networks, in addition to differing in eyebrow findings (and face size) differed 
perhaps most markedly in the size of the philtrum (which had been identified 
as important to the SexNet)! Indeed, the nose width, the third "important" 
feature, was not visibly different in the prototypes. However female nose 
length is represented as much longer than male, which is introspectively 
unrealistic Q but may have resulted from a drive to display a small difference 
between eye-nose and eye-mouth distances (small philtrum). This reinforces 
the concern that the features selected for use in a feature-driven network may 
not be the most important @hiltrum span was not among the input features 
mentioned, though it can be obtained by differencing two other features). 
Additionally, the much longer nose length for the female than the male 
prototype suggests that prototype faces driven by preselected features cannot 
be taken at "face" value. This feature-based network showed an 
average performance of 79% for sexing new faces, compared to 89% for the 
SexNet including an outline of the face and 81% including only the central 
region of the face. 

Other applications of SexNet. 

Although the SexNet task has limited utility of itself Q after all, humans sex 
human faces fine, without recourse to a neural network Q extensions of this 
work have application. For instance, it is not known whether faces differ for 
male and female rhesus monkeys. By training a neural network to perform 
monkey sexing, and comparing the network's performance on untrained 
monkey faces to their known sex, better than chance performance would 
imply there are facial sex differences in rhesus monkeys Q answering a 



question of some ethological significance. Physiologists might then be 
inclined to look for sex-specific face cells in monkey cortex. 

In a more lighthearted vein, one could use personality indices rather than sex 
for the second phase of the net, to scientifically test the tenets of 
anthroposcopy (physiognomy), possibly for the first time. 

More importantIy a variety of congenital medical disorders (such as Down 
syndrome) are accompanied by "craniofacial anomalies" (Dyken, & Miller 
1980), resulting in distinctive "facies", or facial appearances. Some are subtle 
and/or rare, and not often recognized by physicians. It may be possible to to 
screen normal fmm affected infants or children using special purpose neural 
networks. We hope to extend our work to encompass neural nets for 
diagnosing William's syndrome, or infantile hypercalcemia, in which 
childrens' faces are "elfin-like" (Bellugi, Bihrle, Trauner, Jernigan, & Doherty 
1990; Trauner, Bellugi, & Chase 1989) . Williams' faces compare to normals 
in a manner which recalls the male / female distinction in that no isolated well 
described features occur in all of one but none of the other, rather the gestalt 
distinguishes them. Early diagnosis is important because these children often 
have associated cardiac defects requiring surgical correction. 

We have extended our work to include neural network analysis of facial 
expressions, and using similar methodology to that described above, have 
successfully achieved discrimination among eight facial expressions (with 
examples of each expression differing in intensity) corresponding crudely to 
smile, frown, brow-raise, purse-lips, pucker-lips, sneer, squint, and neutral 
(unpublished). The neutral expression was the most difficult to train, a 
finding which again correlated to that of human observers, who like the 
network failed to misclassify this expression as any other, but were reluctant 
to denote it neutral, either. 
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